

MAQ®20
Industrial Data Acquisition

and Control System

MA1064

MAQ20 Python API User Manual

MA1064 MAQ®20 Python API User Manual

ii

MAQ20 Python API User Manual
MA1064 Rev. A – April 2017
© 2017 Dataforth Corporation. All Rights Reserved.
ISO9001:2008-Registered QMS

The information in this manual has been checked carefully and is believed to be accurate; however,
Dataforth assumes no responsibility for possible inaccuracies or omissions. Specifications are subject to
change without notice.

The information, tables, diagrams, and photographs contained herein are the property of Dataforth
Corporation. No part of this manual may be reproduced or distributed by any means, electronic,
mechanical, or otherwise, for any purpose other than the purchaser’s personal use, without the express
written consent of Dataforth Corporation.

MAQ®20 is a registered trademark of Dataforth Corporation
ReDAQ® is a registered trademark of Dataforth Corporation
Modbus® is a registered trademark of the Modbus Organization, Inc.
Python™ is a trademark of Python Software Foundation

MA1064 MAQ®20 Python API User Manual

 iii

Table of Contents

1.0 System Features ... 1

2.0 System Description and Documentation ... 2

3.0 Introduction ... 3

4.0 Installation ... 3

Requirements: .. 3

Examples only requirements: ... 3

Install with python ... 3

Windows: .. 3

All Platforms: ... 4

Install for use with single project: .. 4

5.0 Initialization ... 4

Example of a system with 4 modules (sales demo kit):.. 4

6.0 Getting a module reference: ... 5

Example .. 5

7.0 Reading Data functions: .. 6

Example of reading data live and printing it to console: ... 6

8.0 Reading data Python List notation: ... 7

Example of reading data with Python list notation: ... 7

9.0 Write Data: .. 8

Example using voltage output module ... 8

10.0 Write Data List Notation: ... 9

Example of write data list notation: ... 9

11.0 Modules with special functions: .. 10

Example using the DIOL module to output a frequency. .. 10

12.0 read vs get: ... 11

Example .. 11

13.0 Read/Write registers directly: .. 12

Example relative vs absolute register reading: ... 12

Utilities module: .. 13

Functions .. 13

Example: ... 13

14.0 Exploring the API: ... 14

Example: Using help() and dir() .. 14

15.0 API Structure - Class Diagram: ... 15

Layer 1 (Top): ... 15

Layer 2: ... 15

Layer 3(Bottom): ... 15

MA1064 MAQ®20 Python API User Manual

iv

16.0 Examples: ... 15

List of examples available: ... 15

Qt GUI Example:... 16

17.0 References .. 17

MA1064 MAQ®20 Python API User Manual

 v

About Dataforth Corporation

Our passion at Dataforth Corporation is designing, manufacturing, and marketing the best possible signal
conditioning, data acquisition, and data communication products. Our mission is to set new standards of
product quality, performance, and customer service. Dataforth Corporation, with more than a quarter
century of experience, is the worldwide leader in Instrument Class® Industrial Electronics – rugged, high
performance signal conditioning, data acquisition, and data communication products that play a vital role
in maintaining the integrity of industrial automation, data acquisition, and quality assurance systems. Our
products directly connect to most industrial sensors and protect valuable measurement and control
signals and equipment from the dangerous and degrading effects of noise, transient power surges,
internal ground loops, and other hazards present in industrial environments.

Dataforth spans the globe with more than 50 International Distributors and US Representative
Companies. Our customers benefit from a team of over 130 sales people highly trained in the application
of precision products for industrial markets. In addition, we have a team of application engineers in our
Tucson factory ready to solve any in-depth application questions. Upon receipt of an RFQ or order, our
Customer Service Department provides fast one-day delivery information turnaround. We maintain an
ample inventory that allows small quantity orders to be shipped from stock.

Dataforth operates under an ISO9001:2008 quality management system.

Contacting Dataforth Corporation

Contact Method Contact Information
E-Mail:

 Technical Support

techinfo@dataforth.com

Website: www.dataforth.com

Phone: 520-741-1404 and toll free 800-444-7644

Fax: 520-741-0762

Mail: Dataforth Corporation
3331 E. Hemisphere Loop
Tucson, AZ 85706 USA

Errata Sheets

Refer to the Technical Support area of Dataforth’s website (www.dataforth.com) for any errata information
on this product.

mailto:techinfo@dataforth.com
http://www.dataforth.com/
http://www.dataforth.com/

MA1064 MAQ®20 Python API User Manual

 Page 1 of 30

1.0 System Features

The MAQ20 Data Acquisition System encompasses more than 25 years of design excellence in the
process control industry. It is a family of high performance, DIN rail mounted, programmable, multi-
channel, industrially rugged signal conditioning I/O and communications modules.

Instrument Class Performance

 ±0.035% Accuracy

 Industry leading ±0.3C CJC Accuracy over full operating temperature range

 Ultra low Zero and Span Tempco

 Over-range on one channel does not affect other channels

 1500Vrms Channel-to-Bus Isolation

 240Vrms Continuous Field I/O Protection

 ANSI/IEEE C37.90.1 Transient Protection

 Ventilated Communications and I/O Modules

 Industrial Operating Temperature of -40°C to +85°C

 Wide Range 7-34VDC Power

 CE Compliant, UL/CUL Listing and ATEX Compliance pending

Industry Leading Functionality

 The system is a Modbus Server and can be operated remotely with no local PC

 Up to 4GB of logged data can be transferred via FTP during real-time acquisition

 Up to 24 I/O modules, or 384 channels, per system, per 19” rack width

 Per-channel configurable for range, alarms, and other functions

 Backbone mounts within DIN rail and distributes power and communications

 System firmware automatically registers the installation and removal of I/O modules

 I/O modules can be mounted remotely from the Communications Module

 Equal load sharing power supply modules allow for system expansion

 Hot Swappable I/O modules with Field-side pluggable terminal blocks on most models

 Sophisticated package enables high density mounting in 3U increments

 DIN Rail can be mounted on a continuous flat panel or plate

Distributed Processing Enables Even More Functionality

 Output modules are programmable for user-defined waveforms

 Discrete I/O modules have seven high level functions:

 Pulse Counter

 Frequency Counter

 Waveform Measurement

 Time Between Events

 Frequency Generator

 PWM Generator

 One-Shot Pulse Generator

Multiple Software Options

 Free Configuration Software

 Intuitive Graphical Control Software

 ReDAQ Shape Graphical HMI Design & Runtime Solution

 IPEmotion Muli-Vendor and Multi-Language Solution

 Programming examples and LabVIEW VIs

 OPC Server

MA1064 MAQ®20 Python API User Manual

Page 2 of 30

2.0 System Description and Documentation

A MAQ20 Data Acquisition System must have as a minimum a Communications Module, a
Backbone, and one I/O Module. Examples include:

 MAQ20-COMx Communications Module with Ethernet, USB and RS-232 or RS-485 Interface

 MAQ20-DIOx Discrete Input / Output Module

 MAQ20-xTC Type x Thermocouple Input Module

 MAQ20-mVxN, -VxN Voltage Input Module

 MAQ20-IxN Process Current Input Module

 MAQ20-IO, -VO Process Current Output and Process Voltage Output Module

 MAQ20-BKPLx x Channel System Backbone

Refer to www.dataforth.com/maq20.aspx for a complete listing of available modules and
accessories.

System power is connected to the Communications Module, which in turn powers the I/O modules.
For systems with power supply requirements exceeding what the Communications Module can
provide, the MAQ20-PWR3 Power Supply module is used to provide additional power. When a
MAQ20 I/O module is inserted into a system, module registration occurs automatically, data
acquisition starts, and data is stored locally in the module. The system is based on a Modbus
compatible memory map for easy access to acquired data, configuration settings and alarm limits.
Information is stored in consistent locations from module to module for ease of use and system
design.

MAQ20 modules are designed for installation in Class I, Division 2 hazardous locations and have a
high level of immunity to environmental noise commonly present in heavy industrial environments.

MAQ20 communications modules provide connection between a host computer and a MAQ20 Data
Acquisition System over Ethernet, USB, RS-485 or RS-232. Ethernet communications use the
Modbus TCP protocol, USB communications are based on the Modbus RTU protocol, and RS-485
and RS-232 communications use the Modbus RTU protocol. Serial communications over RS-485
can be either 2-wire or 4-wire. Each MAQ20-COMx module can interface to up to 24 MAQ20 I/O
modules in any combination allowing high channel counts and great flexibility in system
configuration. A removable microSD card can be used by the MAQ20-COMx module to log data
acquired from the MAQ20 I/O modules.

For details on hardware installation, configuration, and system operation, refer to the manuals and
software available for download from www.dataforth.com/maq20_download.aspx This includes, but
is not limited to:

MA1036 MAQ20 Quick Start Guide
MA1040 MAQ20 Communications Module Hardware User Manual
MA1041 MAQ20 milliVolt, Volt and Current Input Module Hardware User Manual
MA1037 MAQ20 Configuration Software Tool User Manual
MA1038 MAQ20 ReDAQ Shape for MAQ20 User Manual

MAQ20-940/-941 ReDAQ Shape Software for MAQ20 – Developer Version/User Version
MAQ20-945 MAQ20 Configuration Software Tool
MAQ20-952 IPEMotion Software for MAQ20

http://www.dataforth.com/model.view.aspx?modelid=2602
http://www.dataforth.com/model.view.aspx?modelid=2586
http://www.dataforth.com/model.view.aspx?modelid=2554
http://www.dataforth.com/model.view.aspx?modelid=2537
http://www.dataforth.com/model.view.aspx?modelid=2537
http://www.dataforth.com/model.view.aspx?modelid=2578
http://www.dataforth.com/model.view.aspx?modelid=2594
http://www.dataforth.com/maq20.aspx
http://www.dataforth.com/maq20_download.aspx
http://www.dataforth.com/softwaredownload/maq20/Manuals/MA1036%20Rev%20B%20-%20MAQ20%20Quick%20Start%20Guide.pdf
http://www.dataforth.com/softwaredownload/maq20/Manuals/MA1040%20Rev%20B%20-%20MAQ20%20Communications%20Module%20HW%20User%20Manual.pdf
http://www.dataforth.com/softwaredownload/maq20/Manuals/MA1041%20Rev%20B%20-%20MAQ20%20mV-V-mA%20Input%20Module%20HW%20User%20Manual.pdf
http://www.dataforth.com/softwaredownload/maq20/Manuals/MA1037%20Rev%20B%20-%20MAQ20%20Configuration%20SW%20Tool%20User%20Manual.pdf
http://www.dataforth.com/softwaredownload/maq20/Manuals/MA1038%20Rev%20B%20-%20ReDAQ%20Shape%20for%20MAQ20%20User%20Manual.pdf
http://www.dataforth.com/maq20_download.aspx
http://www.dataforth.com/maq20_download.aspx
http://www.dataforth.com/maq20_download.aspx

MA1064 MAQ®20 Python API User Manual

 Page 3 of 30

3.0 Introduction

The MAQ20 Python API uses an object-oriented approach for communicating with MAQ20
systems, which provides an intuitive interface where the low-level Modbus commands are hidden
from normal use. Users can focus on solving the measurement problems at hand, instead of re-
inventing how to communicate with modules.

Before using the MAQ20 Python API, you may find it helpful to be acquainted with basic Python
programming and understand the concept of objects.

What the API does for you:

 Communication: to MAQ20 systems from a host PC.

 Address offsetting: When a module is registered in a system, addresses are offset by 2000 * R,
where R is the Registration Number. The API uses relative addressing for the modules, this
means that when using low-level Modbus commands, 0 to 1999 are valid addresses.

 Counts to Engineering units: the API reads information it needs to know at initialization to do
this conversion.

 Rounding: when dealing with small quantities such as millivolts it can get tedious to look at a
bunch of trailing decimals. The API does meaningful rounding to any module up to 3 significant
units of Eng. units per count.

Note: The file names of the examples in this manual are given. Run the examples using your
preferred IDE or by navigating to the examples folder ‘maq20/maq20/examples’ in a terminal
application and type:

python ‘example name’

4.0 Installation

 Requirements:

 Python 3: This API was tested using Python 3.4 and up on Windows 7 32 bit, Windows 10 64 bit,
Ubuntu 64 bit, and Raspbian 64 bit.

 Python Modbus library: The MAQ20 API needs one of the following Modbus libraries:
o uModbus: install using command:

pip install umodbus
o pymodbus3: install using command:

pip install pymodbus3
Examples only requirements:

 PyQt5

 xlsxwriter

 pyqtgraph

Two common approaches in using the API in projects are:
1. Install along the python interpreter, this makes the API available for all projects.
2. Copying into the project folder, this will only make it available for that project only.

 Install with python

 Windows:

 Execute the file maq20-0.5.1.win-amd64.msi OR install from source.

MA1064 MAQ®20 Python API User Manual

Page 4 of 30

 All Platforms:

 Install from source:
 1. Unzip the maq20-x.x.x.zip folder.
 2. Open a terminal or command prompt and navigate to the maq20-x.x.x folder.
 3. Run the command: python setup.py install

 To install a new version: delete the maq20 folder the python installation folder:

1. Python/Lib/site-packages/maq20
 AND

2. Python/Lib/site-packages/maq20-x.x.x-py3.x.egg-info
 Then run the installer again.

 Install for use with single project:

Locate the folder named maq20 folder inside the maq20-x.x.x folder. Copy the maq20 folder to the
location of the project.
Note: be aware that the importing modules from the API is now relative to your project location
instead of the python path.

5.0 Initialization

First, the current python module needs to load the MAQ20 API, the API can be imported the
following way:
 from maq20 import MAQ20

Now the maq20 system needs to be initialized, the constructor has the following signature:
 __init__(self, ip_address="192.168.128.100", port=502)

To call the constructor, type:
 maq20 = MAQ20(ip_address="192.168.128.100", port=502)

If no exception was raised, then the MAQ20 system was initialized correctly and the maq20 variable
holds a reference to it.

To see general information about the system in the command line, type:
 print(maq20)

Example of a system with 4 modules (sales demo kit):

File name: print_system_information.py

Code:

1. from maq20 import MAQ20
2. system0 = MAQ20(ip_address="192.168.128.100", port=502)
3. print(system0)

Output:

1. MAQ20-COM4
2. Registration Number: 0
3. Serial Number -----: S0000000-01
4. Date Code ---------: D0217
5. Firmware Revision -: F1.33
6. Input Channels ---: -1
7. Output Channels ---: -1
8.
9. MAQ20-JTC

MA1064 MAQ®20 Python API User Manual

 Page 5 of 30

10. Registration Number: 1
11. Serial Number -----: S0086701-05
12. Date Code ---------: D1015
13. Firmware Revision -: F2.54
14. Input Channels ---: 8
15. Output Channels ---: 0
16.
17. MAQ20-VDN
18. Registration Number: 2
19. Serial Number -----: S0107000-03
20. Date Code ---------: D0116
21. Firmware Revision -: F2.62
22. Input Channels ---: 8
23. Output Channels ---: 0
24.
25. MAQ20-VO
26. Registration Number: 3
27. Serial Number -----: S0074061-31
28. Date Code ---------: D1015
29. Firmware Revision -: F2.65
30. Input Channels ---: 0
31. Output Channels ---: 8
32.
33. MAQ20-DIOL
34. Registration Number: 4
35. Serial Number -----: S0080710-05
36. Date Code ---------: D0513
37. Firmware Revision -: F1.12
38. Input Channels ---: 5
39. Output Channels ---: 5

6.0 Getting a module reference:

Common Practice using the API is to get a reference to a module to use its functions.
The following MAQ20 functions are provided.

Return Type Definition and description

MAQ20Module find(self, name_or_sn: str)
Attempts to find a module by name or serial number.

MAQ20Module get_module(self, registration_number: int)
Returns the MAQ20Module with the registration number

requested.

COMx get_com(self)
Return COMx module currently registered in this system.

list(MAQ20Module) get_module_list(self)
The current module list that the MAQ20 object holds.

Example:

File name: find_module_in_system.py

Code:

1. from maq20 import MAQ20
2.
3. module_to_find = "VDN"
4. maq20 = MAQ20(ip_address="192.168.128.100", port=502)

MA1064 MAQ®20 Python API User Manual

Page 6 of 30

5. module = maq20.find(module_to_find)
6. if module is None: # Check if module was not found
7. raise ValueError("Module not found") # if not found, raise error.
8. print(module) # print module to see information about it.

Output:

1. MAQ20-VDN
2. Registration Number: 4
3. Serial Number -----: S0098692-16
4. Date Code ---------: D0415
5. Firmware Revision -: F2.62
6. Input Channels ---: 8
7. Output Channels ---: 0

7.0 Reading Data functions:

The following table contains the read data functions for MAQ20Modules:

Return Type Definition and description

list(float) read_data(self, start_channel=0, number_of_channels=1):
Reads data from a sequential number of channels.

float read_channel_data(self, channel):

Reads data from a single channel.

list(float) read_data_minimum(self, start_channel=0,

number_of_channels=1):

Reads minimum data from a sequential number of channels.

float read_channel_data_minimum(self, channel):

Reads minimum data from a single channel.

list(float) read_data_maximum(self, start_channel=0,

number_of_channels=1):

Reads maximum data from a sequential number of channels.

float read_channel_data_maximum(self, channel):

Reads maximum data from a single channel.

list(float) read_data_average(self, start_channel=0,

number_of_channels=1):

Reads average data from a sequential number of channels.

float read_channel_data_average(self, channel=0):

Reads average data from a single channel.

list(float): size
8

read_data_history(self, channel):

Reads data history from a single channel.

Note: versions of all these functions that return raw counts are provided. Just append '_counts' to
the name. Return type is int or list(int).

Example of reading data live and printing it to console:

File name: love_reading_data.py

Code:

MA1064 MAQ®20 Python API User Manual

 Page 7 of 30

1. from maq20 import MAQ20
2. import time
3.
4. module_to_use = "VDN" # change this to a module in your system. ("VSN", "VDN", etc)
5. delay_s = 0.1 # amount in seconds the script waits before reading another sample.
6.
7.
8. maq20 = MAQ20(ip_address="192.168.128.100", port=502)
9.
10. a_module = maq20.find(module_to_use)
11.
12. if a_module is None: # Check if module was found.
13. raise TypeError("Module not found.")
14.
15. while True:
16. print(a_module.read_data(0, number_of_channels=a_module.get_number_of_channels()))

17. time.sleep(delay_s)

Output:

1. [1.59861, 1.59861, 1.59736, 1.59736, 0.00249, -0.00249, 0.0, 0.0]
2. [1.59861, 1.59861, 1.59736, 1.59861, 0.00249, -0.00374, -0.00125, -0.00125]
3. [1.59861, 1.59736, 1.59736, 1.59861, 0.00125, -0.00249, 0.0, -0.00125]

8.0 Reading data Python List notation:

The MAQ20 Python API supports Python list-like behavior for reading and writing data. Indexing,
slicing, iteration, and negative indexing are available.

Example of reading data with Python list notation:

File name: module_read_list_notation.py

Code:

1. from maq20 import MAQ20
2.
3. maq20 = MAQ20()
4. a_module = maq20[1] # Module registered at slot 1, same as a_module = maq20.get_module

(1)
5.
6. # indexing
7. print('Channel 0 : a_module[0] : {}'.format(a_module[0]))
8.
9. print('')
10. # iteration
11. print('for channel in a_module:')
12. for channel in a_module:
13. print(channel)
14.
15. print('')
16. print('for i in range(len(a_module)):')
17. for i in range(len(a_module)):
18. print('Channel {} : {}'.format(i, a_module[i]))
19.
20. print('') # new line
21. # slicing
22. print('Slice from 1 to 4 : a_module[1:5] : {}'.format(a_module[1:5]))

MA1064 MAQ®20 Python API User Manual

Page 8 of 30

23. print('All Channels : a_module[:] : {}'.format(a_module[:]))
24.
25. # negative indexing
26. print('') # new line
27. print('Last Channel : a_module[-1] : {}'.format(a_module[-1]))

Output:

1. Channel 0 : a_module[0] : -1113.26
2.
3. for channel in a_module:
4. -1113.26
5. -1113.26
6. -1113.26
7. -1113.26
8. -1113.26
9. -1113.26
10. 82.576
11. 25.243
12.
13. for i in range(len(a_module)):
14. Channel 0 : -1113.26
15. Channel 1 : -1113.26
16. Channel 2 : -1113.26
17. Channel 3 : -1113.26
18. Channel 4 : -1113.26
19. Channel 5 : -1113.26
20. Channel 6 : 82.576
21. Channel 7 : 25.243
22.
23. Slice from 1 to 4 : a_module[1:5] : [-1113.26, -1113.26, -1113.26, -1113.26]
24. All Channels : a_module[:] : [-1113.26, -1113.26, -1113.26, -1113.26, -1113.26, -

1113.26, 82.576, 25.243]
25.
26. Last Channel : a_module[-1] : 25.243

9.0 Write Data:

These functions, like read_data, operate with real engineering units instead of counts. Count version are
available by appending ‘_counts’ to the name of the function.

Return Type Definition and description

None write_data(self, start_channel, data_set):
Writes data_set to the module starting at channel

start_channel, data_set has to be iterable.

Modbus
response

write_channel_data(self, channel, data):

Writes data to channel.

 Example using voltage output module

File name: module_write_data_functions.py

 Code:

1. from maq20 import MAQ20
2.

MA1064 MAQ®20 Python API User Manual

 Page 9 of 30

3. maq20 = MAQ20(ip_address="192.168.128.100", port=502) # Initialize
4. vo = maq20.find("VO") # get a reference to the module by name
5.
6. if vo is None: # check if module was found
7. raise TypeError("Module was not found")
8.
9. initial_value = vo.read_channel_data(3) # Read initial value
10. print('Initial output value: {}'.format(initial_value))
11.
12. vo.write_channel_data(channel=3, data=3.3) # write using write_data()
13. print('Output value after writing: {}'.format(vo.read_channel_data(3)))
14.
15. vo.write_channel_data(channel=3, data=initial_value) # write back initial value.
16. (start_channel=3, number_of_channels=1))

Output:

1. Initial output value: 0.0
2. Output value after writing: 3.30176

10.0 Write Data List Notation:

Indexing and slicing are available for writing data to output modules.

Example of write data list notation:

File name: output_module_list_notation.py

Code:

1. from maq20 import MAQ20
2.
3. maq20 = MAQ20() # Initialize system with default parameters ip_address='192.168.128.10

0', port=520
4. output_module = maq20.find("VO") # get a reference to the output module by finding by

name.
5.
6. if output_module is None: # check if the module was found.
7. raise TypeError('Module not found')
8.
9. initial_state = output_module[:] # Read the current state of the channels.
10. print('Initial state = output_module[:]\n{}'.format(initial_state)) # print its curren

t state
11.
12. print('\nWriting to all channels at once:')
13. """
14. The following command construct a list by using the built-

in len() function and then using a for loop
15. to write a list that looks like:
16. [3.3, 3.3, 3.3, ..., 3.3]
17. """
18. output_module[:] = [3.3 for _ in range(len(output_module))]
19. print('output_module[:] = [3.3 for _ in range(len(output_module))]\n{}'.format(output_m

odule[:])) # print the state again.
20.
21. print('\nWrite to one channel:')
22. output_module[0] = 1.2

MA1064 MAQ®20 Python API User Manual

Page 10 of 30

23. print('output_module[0] = 1.2\n{}'.format(output_module[:])) # print the state again.

24.
25. print('\nWrite to a subset of channels:')
26. output_module[2:6] = [5, 5, 5, 5]
27. print('output_module[2:6] = [5, 5, 5, 5]\n{}'.format(output_module[:])) # print the st

ate again.
28.
29. output_module[:] = initial_state # Write back initial state.

Output:

1. Initial state = output_module[:]
2. [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
3.
4. Writing to all channels at once:
5. output_module[:] = [3.3 for _ in range(len(output_module))]
6. [3.30176, 3.30176, 3.30176, 3.30176, 3.30176, 3.30176, 3.30176, 3.30176]
7.
8. Write to one channel:
9. output_module[0] = 1.2
10. [1.19971, 3.30176, 3.30176, 3.30176, 3.30176, 3.30176, 3.30176, 3.30176]
11.
12. Write to a subset of channels:
13. output_module[2:6] = [5, 5, 5, 5]
14. [1.19971, 3.30176, 4.99878, 4.99878, 4.99878, 4.99878, 3.30176, 3.30176]

11.0 Modules with special functions:

Some modules provide more functionality beyond reading and writing data. To work with these
modules, import them into the current module in the following way:

from maq20.modules.'module to use' import 'Module To Use'

The current list of these modules is the following, with more to come as the API is developed:

1. DIOL
2. BRDG
3. ISOx

For details, refer to the manuals located in the MAQ20 Software & User Manual Download Center

To initialize the module, its constructor needs to be called. This constructor takes a MAQ20Module
returned by the system using one of the functions from section 6.0

Example using the DIOL module to output a frequency.

 Code:

1. from maq20 import MAQ20
2. from maq20.modules.diol import DIOL
3.
4. system0 = MAQ20(ip_address="192.168.128.100", port=502)
5. module_name = 'DIOL'
6. diol = system0.find(module_name)
7.
8. if diol is not None: # Check if module was found
9. diol = DIOL(maq20_module=diol)

http://www.dataforth.com/maq20_download.aspx

MA1064 MAQ®20 Python API User Manual

 Page 11 of 30

10. else:
11. raise TypeError("Module not found.")
12.
13. diol.write_special_function_5_frequency_generator(timer=0, frequency=500) # frequency

generator 500 Hz
14.
15. print(diol.read_special_function_information(timer=0)) # read back the special functio

n settings using timer 0

Output:

1. Function : 5 = Frequency Generator
2. Arm/Disarm : 1
3. Frequency : 500

12.0 read vs get:

At Initialization, the maq20 API interrogates all modules and saves information in the host's RAM.
This information includes name, inputs, outputs, serial number, ranges information, channel's active
range, and more.

Because of this, it is worth mentioning that many times you can get information without having to
perform Modbus requests. These requests can be slow due to having to wait for the network and
Modbus request response.

'get' functions return immediately without doing reads because data is stored in RAM already.

Example

File name: read_vs_get_example.py

Code:

1. from maq20 import MAQ20
2. import time
3.
4. maq20 = MAQ20(ip_address="192.168.128.100", port=502)
5. module = maq20.get_module(1) # get module with a registration number of 1. maq20[1] re

turns the same thing.
6.
7. if module is None: # check if module is found
8. raise TypeError("Module not found")
9.
10. read_start_time = time.time() # record current time
11. result = module.read_data(start_channel=0, number_of_channels=module.read_input_channel

s()) #perform modbus request.
12. read_time = time.time() - read_start_time # record time taken by subtracting current t

ime with initial time.
13.
14. # Repeat for 'get' function.
15. get_start_time = time.time()
16. result_get = module.read_data(start_channel=0, number_of_channels=module.get_number_of_

channels())

MA1064 MAQ®20 Python API User Manual

Page 12 of 30

17. get_time = time.time() - get_start_time
18.
19. # print results (seconds)
20. print('Read time (seconds): {}'.format(read_time))
21. print('Get time (seconds): {}'.format(get_time))
22. _data(start_channel=3, number_of_channels=1))

Output:

1. Read time (seconds): 0.007004737854003906
2. Get time (seconds): 0.004002809524536133

13.0 Read/Write registers directly:

While almost anything you can do with the MAQ20 system is exposed through the API functions,
once in a while there may be a feature missing. This means that we need to read/write a register
directly.
To do this, the functions read_register/s, write_registers are provided. Refer to the module's manual
and register Address map for details on what reading or writing a register does.

Return Type Definition and description

int read_register(self, address):
Performs a modbus read register request to the MAQ20

List(int) read_registers(self, address, number_of_registers):

Performs a modbus read registers request to the MAQ20

Modbus response write_register(self, address, value):

Performs a modbus write register request to the MAQ20

Modbus response write_registers(self, address, values=None):

Performs a modbus write registers request to the MAQ20

maq20.MAQ20 does not do address offsetting.
maq20.MAQ20Module does address offsetting making this a relative read/write register.

Example relative vs absolute register reading:

File name: relative_read_write_registers.py

Code:

1. from maq20 import MAQ20
2.
3. maq20 = MAQ20()
4. module_1 = maq20[1] # same as maq20.get_module(1)
5. module_2 = maq20[2] # same as maq20.get_module(2)
6.
7. print('System level:')
8. print('maq20.read_registers(2000, 10) : {}'.format(maq20.read_registers(2000, 10)))
9. print('maq20.read_registers(4000, 10) : {}'.format(maq20.read_registers(4000, 10)))
10.
11. print('\nModule level:')
12. # Show that the result is different.

MA1064 MAQ®20 Python API User Manual

 Page 13 of 30

13. print('module_1.read_registers(0, 10) : {}'.format(module_1.read_registers(0, 10))) #
this is equivalent to address 2000 to 2010

14. print('module_2.read_registers(0, 10) : {}'.format(module_2.read_registers(0, 10))) #
this is equivalent to address 4000 to 4010

Output:

1. System level:
2. maq20.read_registers(2000, 10) : [77, 65, 81, 50, 48, 45, 74, 84, 67, 32]
3. maq20.read_registers(4000, 10) : [77, 65, 81, 50, 48, 45, 68, 73, 79, 76]
4.
5. Module level:
6. module_1.read_registers(0, 10) : [77, 65, 81, 50, 48, 45, 74, 84, 67, 32]
7. module_2.read_registers(0, 10) : [77, 65, 81, 50, 48, 45, 68, 73, 79, 76]

Utilities module:

The MAQ20 API includes a module full of static functions that have operation commonly done
before or after reading/writing to a register in the MAQ20 system. To use this module, import it as
such: import maq20.utilities as <name>

To call functions inside this module: <name>.'function name'

Functions

 def signed16_to_unsigned16 (number)

 def unsigned16_to_signed16 (number)

 def response_to_string (int_array)

 def compute_crc (data)

 def check_crc (data, check)

 def try_except (success, failure, exceptions)

 def int16_to_int32 (numbers, msb_first=True)

 def int32_to_int16s (number, msb_first=True)

 def ints_to_float (numbers)

 def float_to_ints (number)

 def round_to_n (x, n)

 def counts_to_engineering_units (counts, p_fs, n_fs, p_fs_c, n_fs_c)

 def engineering_units_to_counts (eng_value, p_fs, n_fs, p_fs_c, n_fs_c)

 def engineering_units_to_counts_dict_input (in_val, range_information)

 def counts_to_engineering_units_dict_input (counts, range_information)

 Example:

File name: utils_example.py

Code:

1. from maq20 import MAQ20
2. import maq20.utilities as utils
3.
4. maq20 = MAQ20(ip_address="192.168.128.100", port=502)
5.
6. com = maq20.get_com() # get a reference to the COM module in the MAQ20 system
7.

MA1064 MAQ®20 Python API User Manual

Page 14 of 30

8. # The name of a module is stored in the first 15 registers
9. name_raw = com.read_registers(0, 15)
10. name = utils.response_to_string(com.read_registers(address=0, number_of_registers=11))

11. print('Raw name: {}'.format(name_raw))
12. print('utils.response_to_string(name_raw) : {}'.format(name))
13.
14. print('') # new line
15. # Writing a number bigger than 16 bits: 2^16-1 = 65535
16. com.write_registers(address=1368, values=utils.int32_to_int16s(987134))
17. # Reading a number bigger than 16 bits:
18. read_back = utils.int16_to_int32(com.read_registers(address=1368, number_of_registers=2

))
19. print('Wrote 32 bit number 987134 and we read: {}'.format(read_back))

Output:

1. Raw name: [77, 65, 81, 50, 48, 45, 67, 79, 77, 52, -1, -1, -1, -1, -1]
2. utils.response_to_string(name_raw) : MAQ20-COM4
3.
4. Wrote 987134 and we read: 987134

14.0 Exploring the API:

Most important functions have docstrings, this means that calling the built-in help() function will
display the docstrings.
The dir() function gives you a list of attributes for an object.
Most IDEs have functionality to expose these elements, so explore your IDE of choice for handy
functions like that.

Example: Using help() and dir()

File name: help_and_dir_functions.py

Code:

1. from maq20 import MAQ20
2.
3. maq20 = MAQ20()
4. module_1 = maq20[1]
5.
6. print(dir(maq20))
7. print(dir(module_1))
8.
9. print(help(maq20))
10. print(help(module_1))

Output:

Output is Omitted for this example as it is too long, run the example opening a terminal in
maq20/maq20/examples/ and type:

python help_and_dir_functions.py

MA1064 MAQ®20 Python API User Manual

 Page 15 of 30

15.0 API Structure - Class Diagram:

The API is designed in a layered structure where the lower a module is, the more MAQ20 module-
specific it is.

Layer 1 (Top):
This is all python built in classes that the API inherits from. This makes every component of the API
a python object as well as a collection and iterable for Python List-like behavior.

Layer 2:
The maq20.maq20.MAQ20 module acts as a container that holds
maq20.maq20module.MAQ20Module modules in the system. MAQ20Module contains common
functionality between all modules that gets passed down to bottom layers through inheritance.
Standard List and Iterator magic methods are implemented.

Layer 3(Bottom):
Module configuration and COMx modules are implemented. This layer contains read/write data
functions, Modbus communication functions and module-specific functions.

For a complete list of function names and descriptions available in each module, refer to
‘Placeholdername’ document.

16.0 Examples:

The MAQ20 Python API is distributed with more examples that were not covered in this User Manual. The
examples are located under maq20 -> examples.

Note: Some examples require additional libraries and MAQ20 hardware. Examples can be modified
without breaking any API functionality. Modify examples to work with modules other than the ones used in
the example.

List of examples available:

1. changing_com_settings
2. demo_suitcase
3. demo_suitcase_ui
4. find_module_in_system
5. help_and_dir_functions
6. live_reading_data
7. module_data_logging_csv

MA1064 MAQ®20 Python API User Manual

Page 16 of 30

8. module_data_logging_xlsx
9. module_iteration
10. module_live_plot
11. module_read_list_notation
12. module_write_data_functions
13. output_module_list_notation
14. print_system_information
15. read_vs_get_example
16. relative_read_write_registers
17. specific_module_operations
18. system_read_all_data
19. utils_example

Qt GUI Example:

The example demo_suitcase.py can be run to show a PyQT5 GUI application that is designed for learning
the API. This example interfaces to the Process Simulator hardware by Dataforth, but it will still run.
Tooltips show the API call behind a GUI element. And, by using Shift+F1 a “What’s This?” context menu
will appear with information about hardware and channel connections to the MAQ20.

To run the example, make sure you have the PyQT5 library installed, and then open a terminal
under the examples folder: maq20/maq20/examples/

Run the command: python demo_suitcase.py

MA1064 MAQ®20 Python API User Manual

 Page 17 of 30

17.0 References

Dataforth MAQ20 Software Download Center
MAQ20 Configuration Software Tool
ReDAQ Shape Software for MAQ20
MAQ20 Hardware and Software User Manuals

Python
https://www.python.org/
https://www.python.org/doc/

http://www.dataforth.com/maq20_download.aspx
http://www.dataforth.com/maq20_download.aspx
http://www.dataforth.com/maq20_download.aspx
http://www.dataforth.com/maq20_download.aspx
https://www.python.org/
https://www.python.org/doc/

MA1064 MAQ®20 Python API User Manual

Page 18 of 30

DATAFORTH WARRANTY
Applying to Products Sold by Dataforth Corporation

a. General. Dataforth Corporation (“Dataforth”)

warrants that its products furnished under this
Agreement will, at the time of delivery, be free from
defects in material and workmanship and will conform
to Dataforth's applicable specifications or, if
appropriate, to buyer's specifications accepted in
writing by Dataforth. DATAFORTH'S OBLIGATION OR
LIABILITY TO BUYER FOR PRODUCTS WHICH DO
NOT CONFORM TO THE ABOVE STATED
WARRANTY SHALL BE LIMITED TO DATAFORTH,
AT DATAFORTH'S SOLE DISCRETION, EITHER
REPAIRING, REPLACING, OR REFUNDING THE
PURCHASE PRICE OF THE DEFECTIVE
PRODUCT(S) PROVIDED THAT WRITTEN NOTICE
OF SAID DEFECT IS RECEIVED BY DATAFORTH
WITHIN THE TIME PERIODS SET FORTH BELOW:

 i. for all software products including licensed
programs, thirty (30) days from date of initial delivery;

 ii. for all hardware products including complete
systems, one (1) year from date of initial delivery;

 iii. for all special products, sixty (60) days from
date of initial delivery; and

further, all products warranted hereunder for which
Dataforth has received timely notice of
nonconformance must be returned FOB to Dataforth's
plant in Tucson, Arizona USA within thirty (30) days
after the expiration of the warranty periods set forth
above.

The foregoing warranties shall not apply to any
products which Dataforth determines have, by buyer or
otherwise, been subjected to operating and/or
environmental conditions in excess of the maximum
value established therefore in the applicable
specifications, or any products that have been the
subject of mishandling, misuse, misapplication,
neglect, improper testing, repair, alteration or damage.
THE PROVISIONS OF THE FOREGOING
WARRANTIES EXTEND TO BUYER ONLY AND NOT
TO BUYER'S CUSTOMERS OR USERS OF BUYER'S
PRODUCTS. THE DATAFORTH STANDARD
WARRANTY IS IN LIEU OF ALL WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE OR USE AND ALL OTHER
WARRANTIES WHETHER EXPRESS, IMPLIED OR
STATUTORY, EXCEPT AS TO TITLE. THE
DATAFORTH STANDARD WARRANTY MAY BE
CHANGED BY DATAFORTH WITHOUT NOTICE.

b. Buyer Indemnity. Buyer agrees to indemnify and

hold Dataforth harmless from and against any and all
claims, damages and liabilities whatsoever asserted by
any person, entity, industry organization, government,

or governmental agency of any country resulting
directly or indirectly (i) from any acts not authorized by
Dataforth in writing or any statements regarding the
products inconsistent with Dataforth's product
documentation or standard warranty, or (ii) from any
breach or threatened breach by buyer, or by any of its
employees or agents, of any term, condition or
provision of this Warranty or (iii) from any warranty,
representation, covenant or obligation given by buyer
to any third party and not expressly provided for in this
Warranty or (iv) for any non-compliance (in any form)
of the products with any necessary or mandatory
applicable laws, regulations, procedures, government
or industry policies or requirements related to the use,
sale or importation of the products. Such
indemnification shall include the payment of all
reasonable attorneys' fees and other costs incurred by
Dataforth in defending such claim.

c. Limitation on Damages.

(1) IN NO EVENT SHALL DATAFORTH, ITS
SUPPLIERS, LICENSORS, SERVICE PROVIDERS,
EMPLOYEES, AGENTS, OFFICERS, AND
DIRECTORS BE LIABLE FOR INDIRECT, SPECIAL,
INCIDENTAL, COVER, ECONOMIC, PUNITIVE,
ACTUAL, EXEMPLARY, CONSEQUENTIAL OR
OTHER DAMAGES OF ANY NATURE INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR
REVENUES, COSTS OF REPLACEMENT
PRODUCTS, LOSS OR DAMAGE TO DATA ARISING
OUT OF THE USE OR INABILITY TO USE ANY
DATAFORTH PRODUCT.

(2) IN NO EVENT SHALL DATAFORTH BE LIABLE
FOR DIRECT, SPECIAL, INDIRECT, INCIDENTAL
OR CONSEQUENTIAL DAMAGES OF ANY NATURE
RESULTING FROM BUYER’S NONCOMPLIANCE
(IN ANY FORM) WITH ALL NECESSARY OR
MANDATORY APPLICABLE LAWS, REGULATIONS,
PROCEDURES, GOVERNMENT POLICIES OR
REQUIREMENTS RELATED TO THE USE, SALE OR
IMPORTATION OF PRODUCTS.

(3) IN NO EVENT WILL THE COLLECTIVE LIABILITY
OF DATAFORTH AND ITS SUPPLIERS,
LICENSORS, SERVICE PROVIDERS, EMPLOYEES,
AGENTS, OFFICERS, AND DIRECTORS TO ANY
PARTY (REGARDLESS OF THE FORM OF ACTION,
WHETHER BASED UPON WARRANTY,
CONTRACT, TORT, OR OTHERWISE) EXCEED THE
GREATER OF EITHER US$1000.00 (ONE
THOUSAND DOLLARS U.S.A. CURRENCY) OR THE
AMOUNT PAID TO DATAFORTH FOR THE
APPLICABLE PRODUCT OR SERVICE OUT OF
WHICH LIABILITY AROSE.

MA1064 MAQ®20 Python API User Manual

 Page 19 of 30

(4) DATAFORTH’S LIABILITY ARISING OUT OF THE
PRODUCTION, SALE OR SUPPLY OF PRODUCTS
OR THEIR USE OR DISPOSITION, WHETHER
BASED UPON WARRANTY, CONTRACT, TORT OR
OTHERWISE, SHALL NOT EXCEED THE GREATER
OF EITHER US$1000.00 (ONE THOUSAND
DOLLARS U.S.A. CURRENCY) OR THE ACTUAL
PURCHASE PRICE PAID BY BUYER FOR
DATAFORTH'S PRODUCTS. DATAFORTH'S
LIABILITY FOR ANY CLAIM OF ANY KIND SHALL IN
NO CASE EXCEED THE OBLIGATION OR LIABILITY
SPECIFIED IN THIS WARRANTY.

d. Technical Assistance. Dataforth 's Warranty as

hereinabove set forth shall not be enlarged, diminished
or affected by, and no obligation or liability shall arise
or grow out of, Dataforth's rendering of technical
advice, facilities or service in connection with buyer's
order of the products furnished hereunder.

e. Warranty Procedures. Buyer shall notify

Dataforth of any products which it believes to be
defective during the applicable warranty period and
which are covered by the Warranty set forth above.
Buyer shall not return any products for any reason
without the prior authorization of Dataforth and
issuance of a Return Material Authorization ("RMA")
number. After issuance of a RMA number, such
products shall be promptly returned by buyer (and in
no event later than thirty (30) days after the Warranty
expiration date), transportation and insurance prepaid,
to Dataforth's designated facility for examination and
testing. Dataforth shall either repair or replace any
such products found to be so defective and promptly
return such products to buyer, transportation and
insurance prepaid. Should Dataforth's examination and
testing not disclose any defect covered by the
foregoing Warranty, Dataforth shall so advise buyer
and dispose of or return the products in accordance

with buyer's instructions and at buyer's sole expense,
and buyer shall reimburse Dataforth for testing
expenses incurred at Dataforth's then current repair
rates.

f. Repair Warranty. Dataforth warrants its repair

work and/or replacement parts for a period of ninety
(90) days from receipt by buyer of the repaired or
replaced products or for the remainder of the warranty
period for the initial delivery of such order as set forth
in paragraph a above, whichever is greater.

g. Critical Applications. Certain applications using

Dataforth's products may involve potential risks of
death, personal injury, or severe property or
environmental damage ("Critical Applications").
DATAFORTH'S PRODUCTS ARE NOT DESIGNED,
INTENDED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT DEVICES
OR SYSTEMS, SAFETY EQUIPMENT, NUCLEAR
FACILITY APPLICATIONS OR OTHER CRITICAL
APPLICATIONS WHERE MALFUNCTION OF THE
PRODUCT CAN BE EXPECTED TO RESULT IN
PERSONAL INJURY, DEATH OR SEVERE
PROPERTY DAMAGE. BUYER USES OR SELLS
SUCH PRODUCTS FOR USE IN SUCH CRITICAL
APPLICATIONS AT BUYER'S OWN RISK AND
AGREES TO DEFEND, INDEMNIFY AND HOLD
HARMLESS DATAFORTH FROM ANY AND ALL
DAMAGES, CLAIMS, PROCEEDINGS, SUITS OR
EXPENSE RESULTING FROM SUCH USE.

h. Static Sensitive. Dataforth ships all product in

anti-static packages. Dataforth's Warranty as
hereinabove set forth shall not cover warranty repair,
replacement, or refund on product or devices damaged
by static due to buyer's failure to properly ground.

MA1064 MAQ®20 Python API User Manual

Page 20 of 30

Application Support

Dataforth provides timely, high-quality product support. Call 1-800-444-7644 TOLL-FREE.

Returns/Repair Policy

All warranty and repair requests should be directed to the Dataforth Customer Service Department at
(520) 741-1404. If a product return is required, request a Return Material Authorization (RMA) number. You
should be ready to provide the following information:

1. Complete product model number.
2. Product serial number.
3. Name, address, and telephone number of person returning product.
4. Special repair instructions.
5. Purchase order number for out-of-warranty repairs.

The product should be carefully packaged, making sure the RMA number appears on the outside of the
package, and ship prepaid to:

Dataforth Corporation
3331 E. Hemisphere Loop
Tucson, AZ 85706 USA

An RMA Request Form and instructions for processing are also found at www.dataforth.com.

The information provided herein is believed to be reliable; however, DATAFORTH assumes no responsibility for
inaccuracies or omissions. DATAFORTH assumes no responsibility for the use of this information, and all use of such
information shall be entirely at the user's own risk. Application information is intended as suggestions for possible use
of the products and not as explicit performance in a specific application. Prices and specifications are subject to
change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to
any third party. DATAFORTH does not authorize or warrant any DATAFORTH product for use in life support devices
and/or systems.

MAQ20 Python API User Manual
MA1064 Rev. A – April 2017
© 2017 Dataforth Corporation. All Rights Reserved.
ISO9001:2008-Registered QMS

	1.0 System Features
	2.0 System Description and Documentation
	3.0 Introduction
	4.0 Installation
	Requirements:
	Examples only requirements:

	Install with python
	Windows:
	All Platforms:

	Install for use with single project:

	5.0 Initialization
	Example of a system with 4 modules (sales demo kit):

	6.0 Getting a module reference:
	7.0 Reading Data functions:
	Example of reading data live and printing it to console:

	8.0 Reading data Python List notation:
	Example of reading data with Python list notation:

	9.0 Write Data:
	Example using voltage output module

	10.0 Write Data List Notation:
	Example of write data list notation:

	11.0 Modules with special functions:
	Example using the DIOL module to output a frequency.

	12.0 read vs get:
	Example

	13.0 Read/Write registers directly:
	Example relative vs absolute register reading:
	Utilities module:
	Functions

	Example:

	14.0 Exploring the API:
	Example: Using help() and dir()

	15.0 API Structure - Class Diagram:
	16.0 Examples:
	List of examples available:
	Qt GUI Example:

	17.0 References

